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When a steadily moving load is applied to a floating ice plate, the disturbance will 
generally approach a steady state (relative to the load) as time t - t  00. However, for 
certain ‘ critical ’ load speeds the disturbance may grow continuously with time, which 
represents some danger to vehicles driving on ice. To understand this phenomenon 
and the overall time development of the ice response, this paper analyses the problem 
of an impulsively applied, concentrated line load on a perfectly elastic homogeneous 
floating ice plate. An exact expression for the ice deflection is derived, and then 
interpreted by means of asymptotic expansions for large t in the vicinity of the 
source. The spatial development of the disturbance is analysed by considering 
asymptotic expansions as t - t  co near an observer moving away from the load. 
Theoretical results are compared with field measurements, and some hitherto 
unexplained features can be understood. 

1. Introduction 
Floating ice is often used as a roadway or aircraft runway, and to estimate 

operational safety one needs a theory describing the response of a floating ice plate 
to a moving load. Such a theory can also be used to estimate ice parameters such as 
Young’s modulus E or viscoelastic constants, from measurements of the response to 
a known load. The first theoretical study appears to have been a paper by Greenhill 
(1887) who derived a dispersion relation for waves in a perfectly elastic, homogeneous 
ice plate, floating above water of uniform depth. Wilson (1958) observed that if the 
vehicle speed V were less than the minimum phase speed cmin for free waves, the ice 
response would be similar to the deflection due to a static load, whereas if V were 
greater than cmln, waves would be generated. He also showed how to calculate the 
wavelengths, and pointed out that the greatest response can be expected when the 
vehicle speed V is equal to cmin. Kheisin (1963) studied in detail the effect of a steadily 
moving point and line load, and found general expressions for the ice displacement. 
He concluded that for the line load there were two ‘critical speeds’ near which the 
steady deflection was unbounded, whereas for the point load there were no such 
critical speeds. Nevel (1970) extended Kheisin’s analysis to deal with a uniform load 
distributed over a circular area, and found that Kheisin’s second conclusion was 
incorrect - that there indeed exists a critical speed, and that such singularities are 
not just artefacts of two-dimensionality. Kerr (1983) identified mathematically this 
critical speed as the minimum phase speed cmin. Obviously, deflections cannot 
become infinite as V approaches the critical speed, and Nevel suggested nonlinear 
effects, dissipation or inhomogeneity of the ice, as possible explanations. However 
Kheisin (1971) realized that the most likely explanation was time dependence - since 
Nevel’s (and his own earlier) analysis assumed a steady deflection, the load had 
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effectively remained in contact with the ice for an infinite time. Kheisin then 
analysed the effect of an impulsively applied steadily moving line load and found 
that when V = cmin the ice deflection grows continuously in time as ti. Unfortunately 
this paper is rather inaccessible and seems to contain several errors of detail in the 
asymptotic analysis. A simple physical explanation of this growth rate was given by 
Davys, Hosking & Sneyd (1985), who observed that this critical speed also coincided 
with the group speed of the waves. Bates & Shapiro (1981) have discussed the effect 
of viscoeleasticity on the ice response, and shown that this will eventually limit the 
growth of the deflection when V = cmin. Kerr (1981) has given a comprehensive 
survey of the literature concerning loads moving across elastic plates supported by 
fluid or Winkler (spring) bases. 

Recent experimental studies of ice waves by Eyre (1977), Beltaos (1980), Takizawa 
(1985) and Squire et al. (1985) have largely agreed with theoretical predictions. It is 
now known just how the ice response varies with speed, and that maximum 
deflections occur when V = cmin -indeed the load speed a t  which maximum 
deflections occur can be used as an estimate of cmin and hence of E (Squire et al. 1985). 
It is legendary that to drive a vehicle across ice can be dangerous a t  certain speeds, 
and Eyre (1977) mentions that ‘apocryphal tales from northern Canada suggest that 
vehicles can create enormous ice waves under certain circumstances ’. Recently 
Takizawa (1985) and Squire et al. (1985) have independently measured amplification 
of the ice response due to a vehicle moving at speed cmin, but find it much less than 
the viscoelastic limit derived by Bates & Shapiro (1981). 

The aim of the present paper is to study the effect of an impulsively applied 
concentrated line load moving with uniform speed, as originally proposed by Kheisin 
(1971), and to investigate a number of time-dependent effects which are important 
in interpreting field measurements. In  $2 we derive an expression for the Fourier 
transform of ice displacement, and in $3 we use the method of steepest descent to find 
asymptotic expansions of the displacement as t + co, in the vicinity of the source. 
Like Kheisin (1971) we find that the ice response is static for V < cmin, wavelike for 
V > cmin and grows as ti when V = cmin, but our formulae differ in amplitude and 
phase. We also find a second ‘critical speed’ V = (gH)i,  where H is water depth and 
g acceleration due to gravity, a t  which the ice displacement grows as ti. In $4 we 
investigate the spatial development of the wave system by considering asymptotic 
limits of the displacement as seen by an observer moving away from the source, and 
find, as expected, that wavelike disturbances are propagated away from the source 
with the relative group speeds, while a t  the two critical speeds V = cmin and V = 
(gH)f the propagation speeds decrease with time as t-i and t-5 respectively. We also 
present results showing the time development of the disturbance, which have been 
calculated using a fast Fourier inversion of the formula derived in $ 2, and show that 
the main features can be understood in terms of the simple asymptotic formulae 
given in $03 and 4. Finally, $5 compares our results with the various field 
measurements, and resolves a number of anomalies. 

2. Expression for surface displacement 
Consider an infinite homogeneous ice sheet of thickness h and density pi floating 

on water of density p as shown in figure 1. The upper undisturbed water surface is 
z = 0 and the sea bed z = - H .  If ~ ( x ,  y ,  t )  represents a small vertical ice-sheet 
deflection then the equation of motion of the ice sheet is 

DV47 +PihTtt = -P(4t)z-o-PgT--f(x, ~ , t )  (2.1) 
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Water - 4  

Sea bed 
z = - H  

FIQURE 1.  Diagram of ice-water system. 

Eh3 
(see e.g. Davys et al. 1985). Here 

D =  
12( 1 - v2) 

is the modulus of rigidity of the ice sheet (E being Young’s modulus and v Poisson’s 
ratio for ice), f(x, y, t )  the downward external stress (or load) exerted on the ice, and 
$ the velocity potential for the flow under the ice. In future we neglect the ice 
acceleration term - the second term on the left-hand side of (2.1) -which is justified 
provided the wavelength of the surface displacement is much larger than the ice 
thickness h. Since the water motion penetrates to a depth comparable with one 
wavelength, the inertia of the thin ice plate will then be small compared with that 
of the moving-water layer. Unless otherwise stated, we shall use following typical 
parameter values for McMurdo Sound in Antarctica (cf. Davys et a l .  1985): E = 
5 x lo9 Nm-2, h = 2.5 m, H = 350 m, v = g, and p = lo3 kg/m3. 

2.1. Single-Fourier-component load 
Consider a one-dimensional (y-independent) load applied a t  t = 0 and thereafter 
moving with constant velocity V i ,  so that the loading function is of the form 

(2.2) f(x, y, t )  = d x -  V t )  H ( t )  > 

where H is the Heaviside step function. We begin by analysing the effect of a single 
Fourier component of g - i.e. a loading function of the form eik(x-Vt) - and anticipate 
that 7 and @ will exhibit a similar x-dependence: 

7 = i ( k ,  t )  eikx, $ = &k, x ,  t )  eikx. 

Because $ satisfies Laplace’s equation, and the kinematic conditions 

($z)z--H = 0, ($z )z -0  = Tt 7 

1 
one can show that ( # L O  = coth ( k H )  Tt ’ 

Substituting (2.3) into (2.1) then gives 

Dk4$ +e coth ( k H )  7 j t t  +pgf = -e-ikVt. 
k 

The general solution of (2.4) is 

(2.3) 

2 FLM 186 
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FIGURE 2. Graphs 

I 1 , , . , , . . I  L J  

10-a 10-8 lo-' 
k 

of phase velocity c and group velocity c, in m/s against wavenumber 
Note that the wavenumber scale is logarithmic. 

where A and B are arbitrary constants and 

c2 = -+g - tanh(kH) ("p"' 1: 

k in m-l. 

The first two terms on the right-hand side of (2.5) represent free waves travelling 
with speed c(k) given by the dispersion relation (2,6), and the last represents the 
forced wave. The constants A and B are found from the initial conditions 

Here k2 are phase functions defined by 

$ , (k )  = k ( c -  V ) ,  $,(k) = k ( c +  V ) .  (2.8) 

The solution for the general loading function (2 .2 )  i s  found by superposing Fourier 
components : 

& k ) f ( k , t )  eiksdk, 

where $! is given by (2.7), and # is the Fourier transform of g, defined by 
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In particular for a concentrated line load g(x-  V t )  = P6(x- V t ) ,  where 6 is the Dirac 
delta function and F a constant representing the applied force per unit length in the 
y-direction, we have 4 = 1/(2z)&, and 

q(x ,  t )  = +(k, t )  eikx dk (2.9) 

is the formal solution. Note that i j (k , t )  is an analytic function of k in some 
neighbourhood of the real axis, since ?(k) is positive for real k, and zeros of $, will 
be cancelled by corresponding zeros in the numerator. A formula equivalent to (2.7) 
and (2.9) has been given by Kheisin (1971). 

Figure 2 shows graphs of the free wave speed c(k) and group speed cg(k) = d(ck)/ 
dk against k for the McMurdo Sound parameters. Note that both c and cg attain 
minimum values, cmin = 22.5 m/s and cgmin = 14.9 m/s. 

3. Asymptotic expansion for large time in the vicinity of the source 

can be combined and written in the form 
We introduce a coordinate X = x- Vt  moving with the source. Now (2.7) and (2.9) 

m ei(kX-elt) 

tanh (kH) dk, s -m 2c(k) $I@) 

e ikX 

where I ,  = k tanh (kH) dk, I, = 

(3.2a, b )  

and ( 3 . 2 ~ )  

For convenience we shall also denote the integrand in each integral I t  by N,(k), i = 
0 ,1 ,2 .  Note that the integral I, is time-independent. 

We expand the integrals asymptotically using the method of steepest descents. 
This involves deforming the contour of integration from the real line in the complex 
k-plane by a displacement -iS/$’(k) (S being some small positive quantity), so that 
on the deformed contour the absolute value of e-i@(k)t is - exponentially small as 
t +  co. This contour defarmation fails a t  points where F ( k )  = 0 - i.e. a t  points of 
stationary phase - and the disjoint branches of the deformed contour muat be linked 
by a straight-line path Qf steepest descent (of. Lighthill 1978, figure 63). Such links 
contribute the terms that dominate the integral far large time, and which are 
generally O(t-i), unless $” also vanishes a t  the point of stationary phase, in which 
case they are O(t-;). 

Since $,(k) is monotonically increasing its derivative is always strictly positive and 
no points of stationary phase occur, so we conclude that the integral I ,  vanishes 
exponentially as t + co. We consider only those terms which decay algebraically with 
time, and accordingly I ,  is neglected. 

The phase function $,(k) is an odd function of k and its behaviour depends 
crucially on the source speed V ,  figure 3 illustrating the various possibilities. Since 

has real zeros for V 2 cmin the integrands N,(k), N,(k) may have real poles: but 
since the combined integrand $(k, t )  elkx is analytic in some neighbourhood of the real 
axis, contour deformation is permissible. Points of stationary phase (i.e. zeros of 
$i(k)) will be denoted by k = k,, k,, zeros of $,(k) by k = k,, k,, and points where 
both $, and $; vanish by k = k,. 

2-2 
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1.0 - 

*I 

0.05 

FIQURE 3. Graphs of the phase function g1 = k ( c - V )  in s-l against wavenumber k in m-l, for 
various representative source speeds: (a) V = 10 <,cgmin; (b )  V = 44.9 = cgmin; ( c )  cgmIn < V =,20 < 
cmin; (d )  V = 22.5 = c,,,; ( e )  cmIn < V = 30 < (gH)r;  (f) V = (gH)' = 58.6; (8)  V = 70 > (gH)'. 
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3.1, Source speeds V for which the disturbance approaches a steady state 
Case ( i ) :  Subcritical speeds, V < cmin 

For subcritical speeds $, has no real zeros, and the integrands N , ( k ) ,  N , ( k ) ,  are 
analytic in some neighbourhood of the real axis. The integral I ,  + 0 as t + GO by the 
Riemann-Lebesgue lemma, so the ultimate steady surface displacement is given 

When V = 0, I ,  can be expressed analytically to give 

~ , ( x , o )  = mexp( - ~ 1 3  -?) cos(+n-F) ,  (3.4) 

where 1 = (4D/pg)a x 42 m is a characteristic lengthscale. Equation (3.4) represents 
the static deflection due to a line load F placed on the ice. Figure 4 shows graphs of 
the steady deflection q s ( X ,  V )  against X for various V ,  which are symmetric about the 
origin since I ,  is an even function of X .  These have been obtained numerically using 
a fast Fourier inversion of (3.3). Since V < cmin wavecrests can never remain 
stationary with respect to the source -they will always overtake it - so the steady 
ice deflection is not wavelike but similar in form to the static deflection (3.4). As V 
approaches cmin however, 7s becomes larger and more oscillatory. 

To discuss the leading time-dependent terms in I ,  we further subdivide the source 
speed range. 

Case ( i ) a :  V c cgmin 

In this case $, is a monotonically increasing function of k (figure 3 a ) ,  so there are 
no points of stationary phase. It follows that I ,  decays exponentially with time, and 
the steady state is approached relatively rapidly. 

Case ( i )  b : V = cgmin 

large time. Specifically we can write 
Now $, has a point of inflexion a t  k = k, say (figure 3 b ) ,  and I ,  is of order t-i for 

where the maximum static deflection per unit force, - v S ( O ,  0) = F13/8D = T,, 
provides a displacement scale, and the modulation timescale t ,  and modulation 
~ 

coefficient a, are given by 
4r(;)D tanh ( k A H )  

CLA = 
6 

2/3np13cA(cA- v) ' 
We use the subscript A to denote the value of a variable a t  k = k ,  and the prime to 
denote differentiation with respect to k.  For the McMurdo Sound parameters we find 
the timescale t ,  is 15.6 s ,  and the coefficient a, = 0.220, so the transients die away 
quite slowly. 

Case ( i )  c : cgmin < w < cmin 
There are two points k,, lc, of stationary phase (see figure 3c)  and we can write 
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Cmin 

100 

V =  30 
t = 30 

FIGURE 4. (ad) The steady ice displacement for various subcritical source speeds. ( e )  The 
displacement when V = emin and t = 100 s, apcording to  the asymptotic formula (3.10). ( f )  The 
displacement when cmin < 77 = 30 m/s < (gH)E, and t = 30 s, according to the asymptotic formula 
(3.7).  The ultimate steady waveform is slightly modulated by transients. 

where the modulation times t,, 1, and modulation coefficients a,, a, are given by 

2n tanh ( k ,  H )  
t -- a, = etc. 

For I/' = 18 m/s the McMurdo Sound parameters give t, = 72.3 s, a, = 0.115, t ,  = 
15.7 s ,  and a, = 0.571. 

A - /%; ICLAl ' 4npcA ( c A  - v, TO 
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Case ( i i ) :  Super-critical speeds, cmin < V < (gH); 
When the source speed becomes supercritical the phase function $1 has two 

positive and two negative zeros on the real k-axis : k = f k,, k = f k, say (figure 3 e ) .  
Since the integrand +(k, t )  eikx is analytic in some neighbourhood of the real axis, we 
may deform the contour of integration to one on which le-i$ltl = e-8t, together with 
four steepest-descent links across the points of stationary phase a t  k = fk,, k = 
f k,. The positive half of this contour is shown in figure 5 (a) .  Now $1 will have no zeros 
on the deformed contour C, so we write 

-F F 
7 = - 1 0 ,  +-I1,, 2np 2ap 

where the integrals I,,, I,,, are as defined in (3.2a, b )  except that the path of 
integration is C instead of the real axis. As before the first term represents the 
ultimate steady state, and the second the transient response. 

The steady term can be evaluated by contour integration. For X > 0 the contour 
C is closed by a large semicircle (kl = R in the upper half-plane, along which the 
integral tends to zero as R+ co by Jordan's lemma. Thus the residue theorem 
gives 

q,(X) = -X residues above C of N,(k) . 

Two of the poles in question occur a t  k = f k, (where c(k,) = V )  and the sum of these 
residues gives a contribution to yS of 

-iF 
P 

F sin ( k z  X) 
tanh (k, H )  . 

PV'(Cgz - V )  
The function N,(k) also has an infinite sequence of poles on the imaginary axis, Using 
(2.5) we can write 

NO(is) = (5 real). 

It is easily seen that the denominator will have an infinite sequence of zeros {a,}, 
n = 1,2,  . . . where nn/H < s, < (n + 1) n/H.  The residues a t  these poles can be written 
in the form -iy, e-SnX where yn = O(n-') as n+ 00 (see Schulkes 1986). Thus 
contributions from these poles to vS will be important only in the vicinity of the 
source, and for the first few n. To summarize, we can write 

ipePsx 
Ds4+pg-pV% cot ( S H ) '  

where 

tanh ( k , H )  + R ( X )  ( X  > 0 )  , 
F sin (k, X )  
PV(Cgz - V )  

7 s  = 

F "  

P n-1 

R ( X )  = - X 7, ePsnx, 

(3.5) 

and the constants y,, s, may be calculated numerically. 
For negative X the contour C must be completed in the lower half-plane, and 

iF 
P 

T~ = --C residues below C of N,(k) . 

This time the real poles occur a t  k = f k, and as before we find 

F sin (k, X )  
tanh ( k , H )  +R( -X) ( X  < 0 ) .  

PV( V - Cgu) 
7 s  = (3.6) 
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Complex k-plane 

-Y 

FIQURE 5. Integration contours (a) for cmin < V < (gH); ;  ( b )  for V = cmin and (c) for V = (gH); :  The 
open circles denote points of stationary phase, and the solid circles, zeros of $,. 

The displacement consists essentially of the two plane waves whose phase speeds 
are equal to the source speed, so that the crests appear stationary relative to the 
source. The short wavelength (k = k,) appears ahead of the source because its group 
speed is greater than the source speed (cgZ > V ) ,  and conversely the long wavelength 
(k = k,) appears behind. 

The time-dependent integral I , ,  has four points of stationary phase k = f k,, 
k = f k,, which give the dominant contributions, of order t-i, as t + 00. One can 

+ a , ( ~ ~ c o s ( k , X - @ , , t + f n : )  1 + R ( X )  ( X > O ) ,  (3 .7)  

where the modulation times t,, t, and modulation coefficients a,, ag are given by 
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The equation for 7 when X < 0 is similar, except that the subscript Y replaces 2, and 
the sign of the coefficient of sin (kyX) is reversed. For a source speed of 30 m/s the 
timescales t,, t ,  are 61.6 s and 3.83 s respectively. Figure 4( f )  shows the ice 
displacement a t  time t = 30 s for V = 30 m/s calculated using (3.7) and the 
corresponding equation for negative X. Modulation by the transients is still evident, 
and since the term R(lX1) was ignored there is a slight discontinuity a t  the origin. 

Case (iii) : v > (g@ 
At higher source speeds (V  > (gH);) there is only one point of stationary phase 

( k  = k,) and only one zero ( k  = k,) of $l. The expressions for 7 can be obtained from 
(3.5), (3.6) and (3.7) simply by setting k ,  ='a, = 0. 

3.2. Source speeds V for which the displacement does not tend to a steady state 
Case (iw) : V = cmin 

When V = cmin the zeros k,, k, of $l and the zero k ,  of $; coincide a t  k = k ,  say, 
where $l will have a double zero (figure 3 d ) .  The contour C must therefore be 
indented around k ,  to avoid the double pole of N o  (see figure 5 b ) .  The integral I,, 
can be evaluated by the residue theorem as before : 

where 
tanh ( k H )  (k -k , )2  

w(k) = 
$l(k) 

The integrand N l ( k )  will be exponentially small on C apart from the straight-line 
segments P3 P4, P5 P6 and the indented segments Pl Pz, P7 Pa. The former give the usual 
stationary phase contributions of O(t-i), while the latter give rise to integrals of the 
form considered in the Appendix which will be dominant for large time - a term 
O(t$ and a time-independent term similar to the first in (3.8b). 

To find the contribution from P7 Pa we use the substitution z = i(k-k,) to rotate 
the contour into the form considered in the Appendix. This gives 

w( k ,  - iz) eikM X + X z  iz27 e - dz + O(ePat), 
N l ( k )  dk = i /cc 2c(k,-iz) z2 

where a is a positive constant and 7 = &b;(k,) t.From (A 8) then, 

The contribution from Pl Pz can be evaluated directly from (A 8), and when the two 
are combined we find 

Finally, combining (3.8) and (3.9) : 

+ R( 1x1) + O( t") , (3.10) 
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(4 
FIGURE 6. (a )  The construction of stationary-phase points for the displacement viewed by a? 
observer moving awax from the source. (hi) Integration contours used when cmin < V < (gH)i ,  
V = cmin and V = (gH)s respectively. The open circles indicate points of stationary phase, and the 
solid circles, zeros of 

where a = k ,  wh/wM and the growth timescale t ,  = 2n/k& c;,. A graph of ice 
displacement in the vicinity of the source, calculated from (3.10), is shown in figure 
4 (el. 

The most striking feature of (3.10) is that the displacement grows in time as ti (cf. 
Kheisin 1971). The physical explanation given by Davys et al. (1985) is that a t  this 
particular source speed, V = c = cg so the wave-energy propagation speed equals the 
source speed. Thus energy accumulates continuously in the vicinity of the source 
where the energy density will grow linearly with time. Since energy density is 
proportional to y2, it  follows that y will grow as ti. 
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Case (v) : v = (gH)t 
At this speed the points f k,, f k ,  all merge together a t  the origin, where the odd 

function $l(k) will have a triple zero. The contour C must be indented about this 
point, as shown in figure 5 ( c ) .  

The integral Ioc is evaluated by the residue theorem : 

sin ( k , X )  + R ( X ) ,  (X > O ) ,  

(X < 0) .  

F tanh ( k ,  H )  

3FX 
(3.11a7 b )  

-F P w g z  - V )  

+ R( -a 
The integrand N,(k)  is exponentially small on C except along the straight segments 
P,P2, P5P6 which give contributions O(t-i), and the indented segment P3P4 which 
gives the dominant term O(ti). This latter term is of the form considered in the 
Appendix (n = 3),  and (A 9) gives 

(3.12) 

Combining (3.11) and (3.12) we find 

F tanh (k, H )  +R(X) ( X  > 0 ) ;  

( X  01, 

( 3 . 1 3 ~ ~  b)  

where /3 = 343r($ ) /2n .  The displacement again grows unboundedly as t + co because 
V = c = cg, but now the wavelength for which this triple equality occurs is a limiting 
wavelength ( A  = 2n1k-t 00) so the singularity is weaker. One might anticipate this 
singularity, since in (3.6) \r,l+ co as V + (gH)i  and cgy + V .  

4. Spatial development of the wave system 
In $ 3  we considered the asymptotic limit t +  co with X fixed, which yields a 

description of the ice displacement in the neighbourhood of the origin. Clearly 
formulae such as (3.10) can be valid only when X is not too large, and indeed the 
Riemann-Lebesgue lemma implies that the ice displacement must tend to zero as 
X --f f 00 for  $xed t. When interpreting experimental records it is important to have 
a picture of the way in which the disturbance spreads out from the source with time, 
and to this end we consider a different kind of asymptotic limit - the limit as t + co 
of the displacement seen by an observer moving away from the source with constant 
relative speed v,. In other words we write X = v,t+X, so that X ,  is a coordinate 
relative to the observer, and take the asymptotic limit t + co with X ,  $xed. 

In  the integrand N ,  we rewrite 

Points of stationary phase are now determined by 

- d@l-  - 0 or cg(k )  = V + v o .  
dk 
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Transients from I2 
I 

Source 
I -v 

' Steady deflection 

FIGURE 7 .  Time development of the ice displacement for V = 18 m/s < cmin. 

4.1. Source speeds V for which the disturbance tends to a steady state 
Case ( i )  : Sub-critical speeds, V < cmin 

lemma. The integral I, can be written in the form 
For fixed X,, X + f 00 as t -+ co and the integral I, --f 0 by the Riemann-Lebesgue 

and will contribute stationary-phase terms of O(t-i) as t --f a. Thus no matter how 
slowly the observer moves away from the source, he will eventually enter a region in 
which r,~ is very small ; in other words the disturbance does not propagate away from 
the source, which is consistent with the idea (cf. $3) that it is static rather than 
wavelike. 

To examine the propagation of the transients let us consider a source moving with 
speed V,, where cgmin < V, < cmin. The transients in the vicinity of the moving 
observer will arise from the points of stationary phase determined by (4.1), and 
shown in figure 6 ( a )  as the points of intersection of the line L, with the group-velocity 
curve. If the observer is moving ahead of the source (v, > 0)  there will be a t  least two 
points of stationary phase, so the observer will always be in the presence of transients 
decaying as t-f. On the other hand, if v, < cgmin- V, < 0 the corresponding line does 
not intersect the group velocity curve - i.e. there will be no points of stationary phase 
and the disturbance in the vicinity of the observer decays exponentially. This means 
that the t-f transients cannot penetrate the region X < - (V, -cgmin) t ,  where the 
displacement will rapidly tend to zero. Figure 7 shows time development of the wave 
system for V = 18 m/s, computed directly from (2.9) by means of a fast-Fourier- 
transform routine. The transients ahead of the source are evident, as is the quiescent 
region behind the marked point X = - (V,  - cgmin) t .  

Case (ii) : Super-critical speeds, cmin < V < (gH); 
Consider a source moving with speed V, in this range, and an observer moving 

ahead with positive relative velocity v,. When v, is small the point k,  of stationary 
phase, determined by the intersection of the line L, with the cg curve in figure 6 (a ) ,  
is to the left of the pole k,, and the corresponding integration contour C, is shown 
in figure 6(b) .  The steady displacement for X > 0 is found by evaluating I ,  using the 
residue theorem applied to the closed contour formed by C, and a large semicircle in 
the upper half-plane. This contour includes the pole k,  so the observer sees the 
steady forward wave. As v, increases however, the point of stationary phase k,  
moves to the right and eventually passes to the right of k,. The completion of 
the corresponding integration contour CL (figure 66)  now excludes the pole k,, and 
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Transients from I, Source 

FIQURE 8. Time development of the wave system for cmin < V = 30 m/s < (gH); .  

the observer sees only decaying transients. The transition (k, = k,) occurs when 

These arguments show just what one would expect - that the forward steady wave 
propagates outward from the source with the relative group speed cgz - V,. Similarly 
one can show that the trailing wave propagates behind the source with relative speed 
V,-cg,. Figure 8 shows the time development of the wave system for V = 30 m/s, 
again computed from (2.9) by a fast Fourier transform. The group speed of the 
leading wave relative to the source (cgz- V )  is 30.5 m/s and the wavelength is 138 m, 
so over a period of 30 s about 7 wavelengths have been generated. In  contrast, the 
relative group speed of the trailing wave ( V - c g y )  is 14.2 m/s and the wavelength 
571 m, so only one wavelength has been generated over the same period. 

v, = cgz- v,. 

Case (iii) : Super-critical speeds, V > (gH)i 

source with the relative group speed cgz - V .  
This is very similar to case (ii) - waves are propagated forwards away from the 

4.2. Source speeds V for which the displacement does not tend to a steady form 
Case ( iv)  : V = cmin 

If an observer moves ahead of the source with constant speed vo > 0 the 
integration contour will be similar to Ck in figure 6 ( b ) ,  so no steady deflection will 
be observed. The disturbance does not therefore propagate forward a t  any finite 
constant speed, as one would expect since the group speed is equal to the source 
speed. 

To investigate the disturbance propagation in more detail we consider an observer 
moving with the ' disturbance front ' whose position a t  time t is given by 

x = X f ( t ) .  

We expect X,( t )  to be a function that increases with t a t  a rate somewhat less than 
linear. As before we introduce X ,  as a coordinate relative to the observer, so that 
X = X, ( t )  + X ,  and 

ei(kX-@,t) = ei(kXo-$lt) , $F1 = k[c-(V+t- 'X,( t ) )] ,  

so the points of stationary phase occur where 

(i.e. a t  the points where the line L, (figure 6 a )  intersects the group-velocity curve). 
Since we expect X,( t ) / t  to be small for large t ,  the greater of the two solutions of (4.2), 
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k = k,, will be close to k, where c = cmin = cg = 8. Expanding c,(k) as a Taylor series 
about k ,  in (4.2) gives 

(4.3) 

Thus as t increases the point k, of stationary phase approaches k ,  from the right. 
Since the integration contour C, for X ,  > 0 (figure 6,) excludes the pole a t  k,, the 
steady contribution from the integral I, vanishes, but the stationary phase 
contribution from I ,  yields 

C;,(kB-kM)=t- lXf( t )  so k , - k ,  = X, ( t )  -. 
tc;, 

Since has a double zero a t  k,, the Taylor series expansion near this point will be 
= ;~;,(k-k,)~, and using (4.3) and (4.4) we find that the amplitude of 7 is 

F tanh (kBH) VC;, t: 
(2n)ipV2 (c;,)ixf. 

Since the observer is situated a t  the ' leading edge ' of the disturbance, the amplitude 
of the local deflection remains constant as t + GO and k ,  + k,, which implies that 

X, ( t )  = tfVi(cL,)a = 28.5tf m 

for the McMurdo Sound parameters. 
Similar analysis shows that the trailing edge of the disturbance is given by 

X = - X , ( t ) .  Thus the disturbance spreads in both directions a t  a speed decreasing 
as t-a for large time. 

Case (w) : V = (gH)f 

Again we write X = X,(t)  +X, ,  where X , ( t )  is the position of an observer moving 
with the disturbance front. For a forward-moving observer, X, > 0 and there is just 
one point of stationary phase where the line L, (figure 6a) intersects the group- 
velocity curve. The corresponding integration contour C, is shown in figure 6 (d )  and 
the situation is similar to case (ii) - an elastic wave of wavenumber k ,  propagating 
forward a t  the relative group speed cgz- V, modulated by t-i transients. 

For a backward-moving observer the situation is quite different. Now the line 
L; (figure 6a)  determines a stationary-phase point k, close to the origin, and the 
corresponding integration contour Ci is shown in figure 6(d). For small k the 
dispersion relation (2.6) assumes the approximate form 

c =  V(1-Qk2H2), wi thcg= V(1-;k2H2). (4.5) 

From the stationary-phase condition (4.2) it  follows that 

where now for simplicity we have taken X ,  to be positive so that the position of the 
disturbance front is X = -Xr. The amplitude of the stationary-phase contribution 
from k = k, is 

F tanh (k, H )  2n 

4npv$lA (m) ' 
(4.7) 

and from (4.5), $.1A=-QVkiH2, C; ,=-V~,H~.  (4.8) 
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Combining (4.6), (4.7) and (4.8) we find that the stationary-phase amplitude is 

-3F V3Hzt3 i 
~~ 

2fn?pV2 ( x; ) . 
Since the amplitude in the vicinity of this observer will be constant, we obtain 

x , ( t )  = H W t t  = 1 i9tg m 

for the McMurdo Sound parameters. Thus the disturbance which grows as ti (see 
(3.13)) propagates only behind the source, a t  a speed that decreases as t-3 for large 
time. 

So far we have ignored the integral I ,  in (3.1) for the reasons outlined in $3. If we 
again consider an observer moving with constant speed vo and write X = X,+v,t, 
then in the numerator of N , ( k )  we rewrite 

e i ( h x + ~ z t )  as ei(kxo+$zt) , $F2 = k ( c +  V+wo). 
This integral will therefore give rise to a stationary-phase transient seen by an 
observer moving rear-ward with a speed greater than or equal to V+cgmin. Such 
transients can be seen in figures 7 and 8, where points X = - (V+cgmin) t are 
marked. 

5. Comparison with experiment 
Recent field observations confirm that the form of the ice deflection changes with 

source speed, according to the theory of $3. Eyre (1977) and Takizawa (1985) 
distinguish the following five source-speed regimes : 

( a )  A low-speed regime, V < 0 . 6 - 0 . 7 ~ ~ ~ ~  when the deflection has the same shape 
as the static deflection, as illustrated in figure 4(a, b). 

( b )  An early transition regime 0 . 6 - 0 . 7 ~ ~ ~ ~  < V < 0.85cmin during which the 
depression becomes deeper and narrower, and the rim rises progressively, as shown 
in figure 4 (c). 

( c )  A late transition regime when V x cmin where a wavelike pattern begins to 
appear both behind and in front of the source, and the depression centre lags behind 
the source, as illustrated in figure 4 ( d ,  e ) .  

( d )  A two-wave regime cmin < V < (gH); with a short elastic wave in front and 
long gravity wave behind, when the ice displacement is given by (3.5) and (3.6). 

( e )  A single-wave regime V > (gH); with waves propagating only ahead of the 
source. 

It seems likely that the transition from regimes ( a )  to ( b )  occurs when V is 
close to cgmin -the speed a t  which wavelike transients first appear. The ratio cgmin/ 
cmin is 0.72 for the physical parameters in Eyre's (1977) experiments, and 0.80 for 
Takizawa 's (1985). No observations of the growing displacement propagated behind 
the source when V = (gH); (equation (3.15)) have been reported, perhaps because the 
unlimited growth a t  this second critical speed has not previously been analysed. 
Another possible reason is that this growing displacement is uniform - i.e. of infinite 
wavelength - and would not register on instruments that measure the slope (Beltaos 
1980) or curvature (Squire et al. 1985) of the ice surface. It is also possible that V = 
(gH); does not represent a critical speed for two-dimensional sources, because wave 
energy could radiate in all directions - not just along the line of motion. On the other 
hand we would expect V = cmin to be a critical speed even for two-dimensional 
sources, since a t  this speed the wavecrests are all parallel and perpendicular to the 
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line of motion, so energy can be propagated only along this line (see Davys et al. 1985, 
discussion on p. 278). An analysis of the two-dimensional time-dependent problem 
is needed to resolve this question. 

Squire et al. (1985) and Takizawa (1985) give results for the 'amplification 
factor ' -the ratio of the maximum displacement or stress at V = cmin to that at 
V = 0. Both authors invoke dissipation (e.g. ice viscoelasticity) to explain why this 
factor is finite, rather than infinite as predicted by the steady-state analysis of Nevel 
(1970). From (3.10) it is clear however that even without dissipation the displacement 
a t  V = cmin will be limited by the time that the source has been travelling. Indeed (3.4) 
shows that the maximum static deflection is 

so from (3.10) we find the amplification factor, 

In the Takizawa (1985) experiments the vehicle travelled about 100 m at  constant 
speed before reaching the observation point - a travel time of lOO/c,,, = 16.6 s. This 
figure gives fA = 6.6, compared with the observed value of about 3.0. The discrepancy 
may be due to viscoelastic damping, or perhaps experimental difficulties in locating 
the resonance peak. Squire et al. (1986) plot a graph of strain against vehicle speed 
(their figure 5.3) which shows a very sharp peak a t  V = cmin, indicating that very 
accurate control of vehicle speed would be necessary to measure the true maximum 
value. Squire et al. (1985) measured the amplification of the ice stress, or equivalently 
the ice curvature. When V = 0 (3.4) shows that the curvature a t  the point of 
maximum depression is F1/4D, so the stress amplification factor f s  can be found 
using (3.10) : 

The length of the vehicle track was 500 m, so assuming instantaneous acceleration we 
put t = 5O0/cmi, = 32 s in (5.1), and obtain fs = 5.0, which again is about twice the 
observed values, which range from 2.24 to 2.29. Bates & Shapiro (1981) estimate that 
viscoelasticity would impose a limit of about 5.0 on the maximum observable value 
off,, so from (5.1) we see that experimental track lengths should be quadrupled to 
ensure that fs is indeed limited by viscoelasticity and not by vehicle run-up time. 

Both Squire et al. (1985) and Takizawa (1985) have measured the wavelengths of 
the steady waves established in the two-wave regime ( d ) .  While both authors find 
good agreement with theory for the leading elastic-dominated waves, the trailing 
gravity waves appear somewhat shorter than theory would predict (see figures 6 and 
5 in the respective papers). Our explanation again relates to the establishment time. 
In $ 4  we showed that waves propagate outwards from the source with the relative 
group speed cg-  V ,  so the number of complete wavelengths h generated in time t is 
tlc, - Vl/A. Table 1 lists, for various source speeds, the number of wavelengths that 
would have been generated when the observations by the above authors were made. 
I n  each case several complete leading elastic waves have been propagated, but where 
the trailing-gravity-wave observations disagree with theory, less than one complete 
wavelength has been generated. 

Eyre (1977), Takizawa (1985) and Beltaos (1980) all note that the point of 
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Author Squire et al. (1985) Takizawa (1985) 

V 17.0 20.0 22.0 6.5 7.5 8.0 
n E  3.6 7.0 9.0 3.4 7.6 9.3 
nB 1.1 0.93 0.79 0.86 0.26 0.03 

Aabslhthea 1 0.9 0.77 1 0.58 0.34 

TABLE 1. The number nE of leading elastic waves, and ne of trailing gravity waves propagated 
at the time of observation. The last row of the table shows the ratio of the observed gravity 
wavelength to its theoretical value. In all cases the elastic wavelengths show good agreement 
with theory. 

maximum depression begins to lag behind the source as V approaches cmin. This 
effect can be seen in figure 4 ( e ) ,  and (3.10) specifies that the point of maximum 
depression should occur one-eighth of a wavelength behind the source. Takizawa 
(1985) has made the interesting observation that even at quasi-static speeds (regime a )  
the deflection lagged the source by a distance of about 1 m. This is at variance 
with our theory, and Takizawa suggests it is a viscoelastic effect. Indeed Kenney 
(1954) has analysed the effect a load moving across an elastic plate supported by a 
Winkler base, with a damping force proportional to the vertical plate velocity. He 
found that damping caused the point of maximum depression to lag behind the load, 
and although the mechanics of this model is quite different from viscoelastic ice 
floating on water, it seems plausible to expect similar behaviour. At higher source 
speeds the lag increases but still remains larger than our theory predicts - e.g. when 
V = cmin the observed lag is 3 4  m, whereas one-eighth of a wavelength is 7c/4k, = 
2.3 m. Equation (3 .6)  shows that for V > cmin the lag increases to one quarter of a 
wavelength (see figures 4e, f ) ,  if term R ( X )  is ignored. (This term must be retained 
to achieve a smooth transition in the lag as V increases through cmin.) 

6. Conclusions 
We have developed a theory to describe the wave system generated by an 

impulsively applied steadily moving line load. Asymptotic expansions as t --f cc give 
relatively simple formulae for the ice displacement, which show how the ice response 
changes with increasing source speed. Generally the displacement will tend to a 
steady form (relative to the source) modulated by transients which decay as t-i or 
sometimes t-4, but a t  two critical speeds V = cmin and V = (gH)i the displacement 
grows continuously because energy is not radiated away. The first of the critical 
speeds has long been recognised, but the second does not seem to have been described 
theoretically or experimentally, although Davys et al. (1985) recognise a transition 
in the wave pattern a t  this speed. Both represent a danger to vehicles on ice because 
of the continuous growth in ice deflections. Asymptotic analysis can also estimate the 
rate a t  which the disturbance propagates away from the source, When a steady wave 
pattern is generated it propagates away with the relative group speed, but a t  the 
critical speeds the propagation speed decays as t-f or t-t. 

The theory can be used to explain various anomalies in experimental observations. 
For example, displacement or stress amplification a t  V = cmin is shown to be limited 
by the time that the source has been moving, as well as by viscoelasticity. Our 
estimates of stress amplification factors are about twice the reported experimental 
values - possibly because of their extreme sensitivity to vehicle speed. Discrepancies 
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between theoretical and observed gravity wavelengths are shown to arise because 
not enough time has elapsed for one complete wavelength to be propagated. One 
observation that this theory cannot explain however is the larger than expected lag 
of the point of maximum depression behind the source. As suggested by Takizawa 
(1985), it seems likely that this is a viscoelastic effect. 

We are grateful to Professor R. J. Hosking for many enlightening discussions and 
helpful comments. 

Appendix 
We shall derive an asymptotic form as t + co for the integral 

where the function f(z) is analytic in some neighbourhood of the origin and C, is the 
contour shown in figure 9. The contours C, for the two cases of particular interest 
- n = 2 and 3 - are also illustrated. 

The function f2(z), defined by setting 

will be analytic in some neighbourhood of the origin, and we write 

say. Integrating by parts gives 

-dz = change along C, of 

p - 2  iznt e dz s = int 
AO+OB 

since the integrand is now analytic and the contour may be deformed. Making the 
substitutions 

z = seia on A O ,  (A 2a) 

z = se‘p on O B  
we find 

To evaluate L,(t) we note that 
r dz -2ni 

Deforming the contour to the straight-lines segments AO, OB,  and making the 
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FIGURE 9. Diagram showing the integration contour C,, ( a )  for general n, (b) n = 2 and (c) n = 3. 

substitutions (A 2a, b )  as before, we find that the contributions of each segment to 
the integral in (A 4) cancel, so that 

2xi 
n 

-L,(t) = -. 

Finally, suppose that f2(z) is analytic inside the circle Ikl = a,  and that C,, is the 
part of C, lyinf inside this circle. On the remaining part of C, the integrand in L2(t) 
is of order e-, t ,  so 

L,(t) = f,(z) eiznt dz+0(epant). (A 6) 1% 
It is easily shown by deforming the contour C,, to two finite straight-line segments 
and making the substitutions (A 2a, b )  that the integral in (A 6) is of order t-lln, so 
combining (A l), (A 3) and (A 5 )  we obtain 

In the two particular cases of interest, n = 2 and 3, the asymptotic expansion 
(A 7 )  takes the form 

L(t) = 2f(0) e-in/4 (xt)t+ x i f ' ( 0 )  + O(t-t) , 

L(t) = f(0) ti2/3r(i) + i ~ i f ' ( O )  + O(t-4). 

(A 8) 

(A 9) 
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